Нейтрон - нейтральная частица, относящаяся к классу адронов. Открыта в 1932 г. английским физиком Дж. Чедвиком. Вместе с протонами нейтроны входят в состав атомных ядер. Электрический заряд нейтрона равен нулю. Это подтверждается прямыми измерениями заряда по отклонению пучка нейтронов в сильных электрических полях, показавшими, что (здесь - элементарный электрический заряд, т. е. абсолютная величина заряда электрона). Косвенные данные дают оценку . Спин нейтрона равен 1/2. Как адрон с полуцелым спином он относится к группе барионов (см. Протон). У каждого бариона есть античастица; антинейтрон был открыт в 1956 г. в опытах по рассеянию антипротонов на ядрах. Антинейтрон отличается от нейтрона знаком барионного заряда; у нейтрона, как и у протона, барионный заряд равен .

Как и протон и прочие адроны, нейтрон не является истинно элементарной частицей: он состоит из одного м-кварка с электрическим зарядом и двух -кварков с зарядом - , связанных между собой глюонным полем (см. Элементарные частицы, Кварки, Сильные взаимодействия).

Нейтроны устойчивы лишь в составе стабильных атомных ядер. Свободный нейтрон - нестабильная частица, распадающаяся на протон , электрон и электронное антинейтрино (см. Бета-распад): . Время жизни нейтрона составляет с, т. е. около 15 мин. В веществе в свободном виде нейтроны существуют еще меньше вследствие сильного поглощения их ядрами. Поэтому они возникают в природе или получаются в лаборатории только в результате ядерных реакций.

По энергетическому балансу различных ядерных реакций определена величина разности масс нейтрона и протона: МэВ. Из сопоставления ее с массой протона получим массу нейтрона: МэВ; это соответствует г, или , где - масса электрона.

Нейтрон участвует во всех видах фундаментальных взаимодействий (см. Единство сил природы). Сильные взаимодействия связывают нейтроны и протоны в атомных ядрах. Пример слабого взаимодействия - бета-распад нейтрона - здесь уже рассматривался. Участвует ли эта нейтральная частица в электромагнитных взаимодействиях? Нейтрон обладает внутренней структурой, и в нем при общей нейтральности существуют электрические токи, приводящие, в частности, к появлению у нейтрона магнитного момента. Иными словами, в магнитном поле нейтрон ведет себя подобно стрелке компаса.

Это лишь один из примеров его электромагнитного взаимодействия.

Большой интерес приобрели поиски диполь-ного электрического момента нейтрона, для которого была получена верхняя граница: . Здесь самые эффективные опыты удалось поставить ученым Ленинградского института ядерной физики АН СССР. Поиски дипольного момента нейтронов важны для понимания механизмов нарушения инвариантности относительно обращения времени в микропроцессах (см. Четность).

Гравитационные взаимодействия нейтронов наблюдались непосредственно по их падению в поле тяготения Земли.

Сейчас принята условная классификация нейтронов по их кинетической энергии: медленные нейтроны эВ, есть много их разновидностей), быстрые нейтроны ( эВ), высокоэнергичные эВ). Весьма интересными свойствами обладают очень медленные нейтроны ( эВ), получившие название ультрахолодных. Оказалось, что ультрахолодные нейтроны можно накапливать в «магнитных ловушках» и даже ориентировать там их спины в определенном направлении. С помощью магнитных полей специальной конфигурации ультрахолодные нейтроны изолируются от поглощающих стенок и могут «жить» в ловушке, пока не распадутся. Это позволяет проводить многие тонкие эксперименты по изучению свойств нейтронов.

Другой метод хранения ультрахолодных нейтронов основан на их волновых свойствах. При малой энергии длина волны де Бройля (см. Квантовая механика) настолько велика, что нейтроны отражаются от ядер вещества подобно тому, как свет отражается от зеркала. Такие нейтроны можно просто хранить в замкнутой «банке». Эта идея была высказана советским физиком Я. Б. Зельдовичем в конце 1950-х гг., и первые результаты были получены в Дубне, в Объединенном институте ядерных исследований спустя почти десятилетие. Недавно советским ученым удалось построить сосуд, в котором ультрахолодные нейтроны живут до своего естественного распада.

Свободные нейтроны способны активно взаимодействовать с атомными ядрами, вызывая ядерные реакции. В результате взаимодействия медленных нейтронов с веществом можно наблюдать резонансные эффекты, дифракционное рассеяние в кристаллах и т. п. Благодаря этим своим особенностям нейтроны широко используются в ядерной физике и физике твердого тела. Они играют важную роль в ядерной энергетике, в производстве трансурановых элементов и радиоактивных изотопов, находят практическое применение в химическом анализе и в геологической разведке.

НЕЙТРОН

НЕЙТРОН

(англ. neutron, от лат. neuter - ни тот, ни другой) (n), электрически нейтральная элем. ч-ца со спином 1/2 и массой, незначительно превышающей массу протона; относится к классу адронов и входит в группу барионов. Из протонов и Н. построены все ядра атомные. Н. открыты в 1932 англ. физиком Дж. Чедвиком, установившим, что обнаруженное нем. физиками В. Боте и Г. Бекером проникающее , к-рое возникает при бомбардировке ат. ядер a-частицами, состоит из незаряж. ч-ц с массой, близкой к протонной.

Н. устойчивы только в составе стабильных ат. ядер. Свободный Н.- нестабильная ч-ца, распадающаяся по схеме:n®p+e-+v=c (бета-распад Н.); ср. Н. t=15,3 мин. В в-ве свободные Н. существуют ещё меньше (в плотных в-вах - единицы - сотни мкс) вследствие их сильного поглощения ядрами. Поэтому свободные Н. возникают в природе или получаются в лаборатории только в яд. реакциях. Свободные Н., взаимодействуя с ат. ядрами, вызывают разл. . Большая эффективность Н. в осуществлении яд. реакций, своеобразие вз-ствия с в-вом медленных Н. (резонансные эффекты, дифракц. рассеяние в кристаллах и т. п.) делают Н. исключительно важным орудием исследования в яд. физике и физике тв. тела (см. НЕЙТРОНОГРАФИЯ). В практич. приложениях Н. играют ключевую роль в яд. энергетике, в производстве трансурановых элементов и радиоакт. изотопов (искусств. ), а также используются в хим. анализе (активац. анализ) и в геол. разведке (нейтронный каротаж).

Основные характеристики нейтронов.

Масса. Наиболее точно определена разность масс Н. и протона: mn--mp=1,29344(7) МэВ, измеренная по энергетич. балансу разл. яд. реакций. Отсюда (и известной mp) mn= 939,5731(27) МэВ или mn»1,675Х10-24 г»1840me (me - эл-на).

Спин и статистика. Спин Н. J был измерен по расщеплению пучка очень медленных Н. в неоднородном магн. . Согласно квант. механике, пучок должен расщепляться на 2J+1 отд. пучков. Наблюдалось расщепление на два пучка, т. е. для Н. J=1/2 и Н. подчиняется Ферми - Дирака статистике (независимо это было установлено на основе эксперим. данных по строению ат. ядер).

Рассеяние медленных Н. на протонах при энергиях до 15 МэВ сферически симметрично в системе центра инерции. Это указывает на то, что рассеяние определяется вз-ствием np в состоянии относит. движения с орбит. моментом l=0 (т. н. S-волна). S-рассеяние превалирует над рассеянием в др. состояниях, когда де Бройля Н. ?? радиуса действия яд. сил. Т. к. при энергии 10 МэВ для Н. ?»2 10-13 см, эта особенность рассеяния Н. на протонах при таких энергиях даёт сведения о порядке величины радиуса действия яд. сил. Из теории рассеяния микрочастиц следует, что рассеяние в S-состоянии слабо зависит от детальной формы потенциала вз-ствия и с хорошей точностью описывается двумя параметрами: эфф. радиусом r потенциала и длиной рассеяния а. Для описания np-рассеяния число параметров вдвое больше, т. к. система может находиться в двух состояниях с разными значениями полного спина: 1 (триплетное состояние) и 0 (синглетное состояние). Опыт показывает, что длины рассеяния Н. протоном и эфф. радиусы вз-ствия в синглетном и триплетном состояниях различны, т. е. яд. силы зависят от суммарного спина ч-ц. В частности, связ. состояние системы np - ядро дейтерия может существовать лишь при спине 1. Длина рассеяния в синглетном состоянии, определённая из опытов по pp-рассеянию (два протона в S-состоянии, согласно Паули принципу, могут находиться только в состоянии с нулевым суммарным спином), равна длине np-рассеяния в синглетном состоянии. Это согласуется с изотопич. инвариантностью сильного вз-ствия. Отсутствие связ. системы np в синглетном состоянии и изотопич. инвариантность яд. сил приводят к выводу, что не может существовать связ. системы двух Н-- т. н. бинейтрон. Прямых опытов по nn-рассеянию не проводилось из-за отсутствия нейтронных мишеней, однако косв. данные (св-ва ядер) и более непосредственные - изучение реакций 3Н+3Н®4Не+2n, p-+d®2n+g согласуются с гипотезой изотопич. инвариантности яд. сил и отсутствием бинейтрона. (Если бы бинейтрон существовал, то в этих реакциях наблюдались бы при вполне определ. энергиях пики в энергетич. распределениях соотв. a-частиц и g-квантов.) Хотя яд. вз-ствие в синглетном состоянии недостаточно велико, чтобы образовать бинейтрон, это не исключает возможности образования связ. системы из большого числа одних только Н.- нейтронных ядер (ядра из трёх-четырёх Н. не обнаружены).

Э л е к т р о м а г н и т н о е в з а и м о д е й с т в и е. Эл.-магн. св-ва Н. определяются наличием у него магн. момента, а также существующим внутри Н. распределением положит. и отрицат. зарядов и токов. Магн. момент Н. определяет поведение Н. во внеш. эл.-магн. полях: расщепление пучка Н. в неоднородном магн. поле, прецессию спина Н. Внутр. эл.-магн. структура Н. (см. ФОРМФАКТОР) проявляется при рассеянии эл-нов высокой энергии на Н. и в процессах рождения мезонов на Н. g-квантами. Вз-ствие магн. момента Н. с магн. моментами электронных оболочек атомов существенно проявляется для Н., длина де Бройля к-рых??ат. размеров ( ? НЕЙТРОНОГРАФИЯ). Интерференция магн. рассеяния с ядерным позволяет получать пучки поляризованных медленных Н. Вз-ствие магн. момента Н. с электрич. полем ядра вызывает специфич. швингеровское рассеяние Н. (указано впервые амер. физиком Ю. Швингером). Полное этого рассеяния невелико, однако при малых углах (=3°) оно становится сравнимым с сечением яд. рассеяния; Н., рассеянные на такие углы, в сильной степени поляризованы. Вз-ствие Н. с эл-ном, не связанное с собств. или орбит. моментом эл-на, сводится в осн. к вз-ствию магн. момента Н. с электрнч. полем эл-на. Хотя это вз-ствие очень мало, его удалось наблюдать в иеск. экспериментах.


Что такое нейтрон в физике. Его строние, а также важная роль в стабильности атомного ядра. История открытия нейтрона. Свойства быстрых и медленных нейтроно...

Что такое нейтрон в физике: строение, свойства и использование

От Masterweb

31.05.2018 12:00

Что такое нейтрон? Такой вопрос чаще всего возникает у людей, которые не занимаются ядерной физикой, ведь под нейтроном в ней понимают элементарную частицу, которая не имеет электрического заряда и обладает массой, превышающей электронную в 1838,4 раза. Вместе с протоном, масса которого немного меньше, чем масса нейтрона, он является "кирпичиком" атомного ядра. В физике элементарных частиц нейтрон и протон полагаются двумя разными формами одной частицы - нуклона.

Строение нейтрона

Нейтрон присутствует в составе ядер атомов для каждого химического элемента, исключение составляет лишь атом водорода, ядро которого представляет собой один протон. Что такое нейтрон, какое строение он имеет? Хотя он и называется элементарным "кирпичиком" ядра, но все же имеет свою внутреннюю структуру. В частности, он относится к семейству барионов и состоит из трех кварков, два из которых являются кварками нижнего типа, а один - верхнего. Все кварки имеют дробный электрический заряд: верхний заряжен положительно (+2/3 от заряда электрона), а нижний - отрицательно (-1/3 электронного заряда). Именно поэтому нейтрон не имеет электрического заряда, ведь он у составляющих его кварков просто компенсируется. Тем не менее, магнитный момент нейтрона не равен нулю.

В составе нейтрона, определение которого было дано выше, каждый кварк соединен с остальными с помощью глюонового поля. Глюон является частицей, ответственной за образование ядерных сил.

Помимо массы в килограммах и атомных единицах массы, в ядерной физике массу частицы описывают также в ГэВ (гигаэлектронвольтах). Это стало возможным после открытия Эйнштейном своего знаменитого уравнения E=mc2, которое связывает энергию с массой. Что такое нейтрон в ГэВ? Это величина 0,0009396, которая немного больше аналогичной для протона (0,0009383).

Стабильность нейтрона и ядер атомов

Присутствие нейтронов в атомных ядрах очень важно для их стабильности и возможности существования самой атомной структуры и вещества в целом. Дело в том, что протоны, которые также составляют атомное ядро, имеют положительный заряд. И сближение их на близкие расстояния требует затрат огромных энергий ввиду кулоновского электрического отталкивания. Ядерные же силы, действующие между нейтронами и протонами на 2-3 порядка сильнее кулоновских. Поэтому они способны удерживать положительно заряженные частицы на близких расстояниях. Ядерные взаимодействия являются короткодействующими и проявляют себя только в пределах размеров ядра.

Формулу нейтронов используют для нахождения их количества в ядре. Она выглядит так: количество нейтронов = атомная масса элемента - атомный номер в таблице Менделеева.

Свободный нейтрон - это частица нестабильная. Среднее время его жизни составляет 15 минут, после чего он распадается три частицы:

  • электрон;
  • протон;
  • антинейтрино.

Предпосылки открытия нейтрона

Теоретическое существование нейтрона в физике было предложено еще в 1920 году Эрнестом Резерфордом, который пытался таким образом объяснить, почему атомные ядра не разваливаются из-за электромагнитного отталкивания протонов.

Еще раньше, в 1909 году в Германии, Боте и Беккер установили, что если альфа-частицами больших энергий от полония облучать легкие элементы, например, бериллий, бор или литий, то образуется излучение, которое проходит через любую толщину различных материалов. Они предположили, что это излучение гамма, однако ни одно подобное излучение, известное на тот момент, не обладало такой большой проникающей способностью. Эксперименты Боте и Беккера не были интерпретированы должным образом.

Открытие нейтрона


Существование нейтрона было обнаружено английским физиком Джеймсом Чедвиком в 1932 году. Он изучал радиоактивное излучение бериллия, провел серию экспериментов, получив результаты, которые не совпадали с теми, что предсказывали физические формулы: энергия радиоактивного излучения намного превосходила теоретические значения, также нарушался закон сохранения импульса. Поэтому необходимо было принять одну из гипотез:

  1. Либо момент импульса не сохраняется при ядерных процессах.
  2. Либо радиоактивное излучение состоит из частиц.

Первое предположение ученый отбросил, поскольку оно противоречит фундаментальным физическим законам, поэтому принял вторую гипотезу. Чедвик показал, что радиационное излучение в его экспериментах образовано частицами с нулевым зарядом, которые обладают сильной проникающей способностью. Кроме того, он смог измерить массу этих частиц, установив, что она немного больше таковой для протона.

Медленные и быстрые нейтроны

В зависимости от энергии, которой обладает нейтрон, он называется медленным (порядка 0,01 МэВ) или быстрым (порядка 1 МэВ). Такая классификация важна, поскольку от скорости нейтрона зависят некоторые его свойства. В частности, быстрые нейтроны хорошо захватываются ядрами, приводя к образованию их изотопов, и вызывая их деление. Медленные же нейтроны плохо захватываются ядрами практически всех материалов, поэтому они могут беспрепятственно проходить сквозь толстые слои вещества.

Роль нейтрона в делении ядра урана


Если задаваться вопросом, что такое нейтрон в ядерной энергетике, то можно с уверенностью сказать, что это средство индуцирования процесса деления ядра урана, сопровождаемое выделением большой энергии. Во время этой реакции деления также порождаются нейтроны различных скоростей. В свою очередь образованные нейтроны индуцируют распад других ядер урана, и реакция протекает цепным образом.


Если реакция деления урана будет неконтролируемой, то это приведет к взрыву реакционного объема. Данный эффект используется в ядерных бомбах. Контролируемая реакция деления урана является источником энергии в ядерных электростанциях.

Улица Киевян, 16 0016 Армения, Ереван +374 11 233 255