Энциклопедичный YouTube

    1 / 5

    ✪ Энергия Вселенной. Самые мощные объекты в космосе. Космические путешествия HD 01.04.2017

    ✪ Космическая энергия - Вадим Зеланд

    ✪ Последние космические шаги СССР (РН Энергия)

    ✪ Урок 118. Потенциальная энергия гравитационного взаимодействия. Вторая космическая скорость

    ✪ Евгений Аверьянов - Невезение, космическая энергия и генератор метелка

    Субтитры

Хронология развития космической энергетики

1990 :"Исследовательским центром им. М. В. Келдыша" разработана концепция энергоснабжения Земли из космоса с использованием низких околоземных орбит. «Уже в 2020-2030 годы можно создать 10-30 космических электростанций, каждая из которых будет состоять из десяти космических энергомодулей. Планируемая суммарная мощность станций будет равна 1,5-4,5 ГВт, а суммарная мощность у потребителя на Земле - 0,75-2,25 ГВт». Далее планировалось к 2050-2100 годам довести количество станций до 800 единиц, а конечную мощность у потребителя до 960 ГВт. Однако на сегодняшний день неизвестно даже о создании рабочего проекта на основе этой концепции [ ] ;

2009 : Японское агентство аэрокосмических исследований объявило о своих планах вывести на орбиту спутник солнечной энергии, которые будут передавать энергию на Землю с помощью микроволн. Они надеются вывести первый прототип орбитального спутника к 2030 году.

2009 : Компания Solaren расположенная в Калифорнии (США) подписала договор с компанией PG&E о том, что последняя будет покупать энергию, которую Solaren произведет в космосе. Мощность будет составлять 200 МВт. По плану этой энергией будут питаться 250 000 домов. Реализация проекта планируется на 2016 год.

2011 : Объявлено о проекте нескольких японских корпораций, который должен быть реализован на базе 40 спутников с прикрепленными солнечными батареями. Флагманом проекта должна стать корпорация Mitsubishi . Передача на землю будет осуществляться с применением электромагнитных волн, приёмником должно стать «зеркало» диаметром около 3 км, которое будет находиться в пустынном районе океана . По состоянию на 2011 год планируется запустить проект в 2012 году

2013 : Главное научное учреждение Роскосмоса - ЦНИИмаш выступил с инициативой создания российских космических солнечных электростанций (КСЭС) мощностью 1-10 ГВт с беспроводной передачей электроэнергии наземным потребителям. В ЦНИИмаше обращают внимание, что американские и японские разработчики пошли по пути использования СВЧ -излучения, которое сегодня представляется значительно менее эффективным, чем лазерное .

Спутник для выработки энергии

История идеи

Изначально идея появилась в 1970-х годах. Появление такого проекта было связано с энергетическим кризисом. В связи с этим правительство США выделило 20 миллионов долларов космическому агентству NASA и компании Boeing для расчёта целесообразности проекта гигантского спутника SPS (Solar Power Satellite).

После всех расчётов оказалось, что такой спутник вырабатывал бы 5000 мегаватт энергии, после передачи на землю оставалось бы 2000 мегаватт. Чтобы понять много это или нет, стоит сравнить эту мощность с Красноярской ГЭС , мощность которой составляет 6000 мегаватт. Но примерная стоимость такого проекта 1 триллион долларов, что и послужило причиной закрытия программы.

Схема технологии

Система предполагает наличие аппарата-излучателя, находящегося на геостационарной орбите . Предполагается преобразовывать солнечную энергию в форму, удобную для передачи (СВЧ , лазерное излучение), и передавать на поверхность в «концентрированном» виде. В этом случае на поверхности необходимо наличие «приёмника», воспринимающего эту энергию .

Космический спутник по сбору солнечной энергии по существу состоит из трех частей:

  • средства сбора солнечной энергии в космическом пространстве, например, через солнечные батареи или тепловой двигатель Стирлинга ;
  • средства передачи энергии на землю, например, через СВЧ или лазер;
  • средства получения энергии на земле, например, через ректенны .

Космический аппарат будет находиться на ГСО и ему не нужно поддерживать себя против силы тяжести. Он также не нуждается в защите от наземного ветра или погоды, но будет иметь дело с космическими опасностями, такими как микрометеориты и солнечные бури .

Актуальность в наши дни

Так как за 40 лет со времени появления идеи солнечные батареи сильно упали в цене и увеличились в производительности, а грузы на орбиту стало доставлять дешевле, в 2007 году «Национальное космическое общество» США представило доклад в котором говорит о перспективах развития космической энергетики в наши дни.

Преимущества системы

  • Высокая эффективность из-за того, что нет атмосферы, выработка энергии не зависит от погоды и времени года.
  • Практически полное отсутствие перерывов так как кольцевая система спутников, опоясывающая Землю, в любой момент времени будет иметь хотя бы один, освещаемый Солнцем.

Лунный пояс

Проект космической энергетики представленный компанией Shimizu в 2010 году . По задумке японских инженеров это должен быть пояс из солнечных батарей протянутый по всему экватору Луны (11 тыс. километров) и шириной 400 километров.

Солнечные панели

Так как производство и транспортировка такого количества солнечных батарей с земли не представляется возможным, то по замыслу ученых солнечные элементы должны будут производится прямо на Луне. Для этого можно использовать лунный грунт из которого можно делать солнечные батареи.

Передача энергии

Энергия с этого пояса будет передаваться радиоволнами с помощью громадных 20 километровых антенн и приниматься ректеннами здесь, на Земле. Второй способ передачи который может использоваться это передача световым лучом с помощью лазеров и прием свето-уловителем на земле.

Преимущества системы

Так как на Луне нет атмосферы и погодных явлений, энергию можно будет вырабатывать почти круглосуточно и с большим коэффициентом эффективности.

Дэвид Крисуэлл предположил, что Луна является оптимальным местом для солнечных электростанций. Основное преимущество размещения солнечных коллекторов энергии на Луне в том, что большая часть солнечных батарей может быть построена из местных материалов, вместо земных ресурсов, что значительно снижает массу и, следовательно, расходы по сравнению с другими вариантами космических солнечных электростанций.

Технологии применяющиеся в космической энергетике

Беспроводная передача энергии на Землю

Беспроводная передача электроэнергии была предложена на ранней стадии в качестве средства для передачи энергии от космической или Лунной станции к Земле. Энергия может быть передана с помощью лазерного излучения или СВЧ на различных частотах в зависимости от конструкции системы. Какой выбор был сделан, чтобы передача излучения была не ионизирующей, во избежание возможных нарушений экологии или биологической системы региона получения энергии? Верхний предел для частоты излучения установлен таким, чтобы энергия на один фотон не вызывала ионизацию организмов при прохождении через них. Ионизация биологических материалов начинается только с ультрафиолетового излучения и, как следствие, проявляется при более высоких частотах, поэтому большое количество радиочастот будет доступно для передачи энергии.

Лазеры

Преобразование солнечной энергии в электрическую

В космической энергетике (в существующих станциях и при разработках космических электростанций) единственный способ эффективного получения энергии это использование фотоэлементов. Фотоэлемент - электронный прибор, который преобразует энергию фотонов в электрическую энергию . Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века. Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии. КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16 %, у лучших образцов до 25 %. В лабораторных условиях уже достигнут КПД 43 % .

Получение энергии от СВЧ волн испускаемых спутником

Так же важно почеркнуть способы получения энергии. Один из них это получение энергии с помощью ректенн. Ректенна (выпрямляющая антенна) - устройство , представляющее собой нелинейную антенну, предназначенную для преобразования энергии поля падающей на неё волны в энергию постоянного тока . Простейшим вариантом конструкции может быть полуволновый вибратор, между плечами которого устанавливается устройство с односторонней проводимостью (например диод). В таком варианте конструкции антенна совмещается с детектором, на выходе которого, при наличии падающей волны, появляется ЭДС. Для повышения усиления такие устройства могут быть объединены в многоэлементные решётки.

Преимущества и недостатки

Космическая солнечная энергия - энергия, которую получают за пределами атмосферы Земли. При отсутствии загазованности атмосферы или облаков, на Землю падает примерно 35 % энергии от той, которая попала в атмосферу. Кроме того, правильно выбрав траекторию орбиты, можно получать энергию около 96 % времени. Таким образом, фотоэлектрические панели на геостационарной орбите Земли (на высоте 36000 км) будет получать в среднем в восемь раз больше света, чем панели на поверхности Земли и даже больше когда космический аппарат будет ближе к Солнцу чем Земля. Дополнительным преимуществом является тот факт, что в космосе нет проблемы с весом или коррозии металлов из-за отсутствия атмосферы.

С другой стороны, главный недостаток космической энергетики и по сей день является её высокая стоимость. Средства, затраченные на вывод на орбиту системы общей массой 3 млн т. окупятся только в течение 20 лет, и это если принимать в расчёт удельную стоимость доставки грузов с Земли на рабочую орбиту 100 $/кг. Нынешняя же стоимость вывода грузов на орбиту намного больше.

Вторая проблема создания ОЭС - большие потери энергии при передаче. При передаче энергии на поверхность Земли будет потеряны, по крайней мере, 40-50 %.

Основные технологические проблемы

По данным американских исследований 2008 года, есть пять основных технологических проблем, которые наука должна преодолеть, чтобы космическая энергия стала легкодоступной:

  • Фотоэлектрические и электронные компоненты должны работать с высокой эффективностью при высокой температуре.
  • Беспроводная передача энергии должна быть точной и безопасной.
  • Космические электростанции должны быть недорогими в производстве.
  • Низкая стоимость космических ракет-носителей.
  • Поддержание постоянного положения станции над приёмником энергии: давление солнечного света будет отталкивать станцию от нужного положения, а давление электромагнитного излучения , направленного на Землю, будет толкать станцию от Земли.

Другие способы использования космической энергии

Использование электроэнергии в космических полетах

Кроме того, чтобы излучать энергию на Землю, спутники ОЭС могут также питать межпланетные станции и космические телескопы. Так же это может быть безопасной альтернативой ядерным реакторам на корабле который полетит на красную планету . Другой сектор, который может извлечь выгоду из

На днях в Колорадо прошла конференция «Новое поколение суборбитальных исследователей» , на которой обсуждались, в частности, проекты строительства космических солнечных станций. И если раньше подобные идеи никто всерьез не воспринимал, то сейчас они действительно близки к реализации.

Так, Конгресс США готовит план постепенного перехода Америки от ископаемого топлива на космическую энергетику. За внедрение проекта будет отвечать специально созданный департамент космоса, активную роль в его работе будут играть NASA, министерство энергетики и другие организации.

До октября нынешнего года министерство юстиции должно представить Конгрессу все необходимые изменения и дополнения к действующему федеральному законодательству, чтобы начать строительство космических солнечных электростанций. В рамках программы на начальном этапе планируется разработать системы ядерных космических двигателей, чтобы применять корабли многоразового использования для космической логистики и строительства гелиоустановок на орбите.

В активной разработке также технологии, позволяющие преобразовать солнечный свет в электричество и телепортировать его на Землю.

В частности, специалисты Калифорнийского технологического института предлагают освещать планету с помощью орбитальных «ковров-самолетов». Это системы из 2 500 панелей толщиной 25 мм и длиной в 2/3 футбольного поля. Элементы такой станции будут доставлять на орбиту ракеты вроде Space Launch System — американской сверхтяжелой ракеты-носителя, разрабатываемой NASA. Космическая электростанция создается в рамках SSPI (Space Solar Power Initiative) — партнерского проекта Калифорнийского технологического университета и компании Northrup Grumman. Последняя инвестировала $17,5 млн, чтобы в течение предстоящих трех лет разработать основные компоненты системы. Инициативу также поддержали исследователи в лаборатории Jet Propulsion в NASA.

По словам профессора Калифорнийского технологического университета Гарри Этуотера , возглавившего Space Solar Power Initiative, «ковры-самолеты» преобразуют солнечную энергию в радиоволны и отправляют их на землю. Энергия будет передаваться по принципу фазированной решетки, которая используется в радарных системах. Это позволит создавать поток, движущийся в любом направлении.

Солнечные панели состоят из плиток, размером 10х10 см и весом около 0,8 г, что обеспечит сравнительно невысокую стоимость запуска конструкции. Каждая плитка станет передавать преобразованную энергию автономно и если одна из них выйдет из строя, остальные будут продолжать работать. Потеря нескольких элементов из-за солнечных вспышек или мелких метеоритов не нанесет вреда электростанции. По расчетам ученых, при массовом производстве стоимость электричества от такого источника будет меньше, чем при использовании угля или природного газа.

Процент наземных солнечных установок в общем балансе энергообеспечения многих стран мира становится все выше. Но возможности таких электростанций ограничены: по ночам и при сильной облачности солнечные батареи утрачивают способность вырабатывать электричество. Поэтому идеальный вариант — разместить гелиоэлектростанции на орбите, где день не сменяется ночью, а облака не создают преград между Солнцем и панелями. Главным преимуществом постройки электростанции в космосе является ее потенциальная эффективность. Солнечные батареи, расположенные в космосе, могут генерировать энергии в десять раз больше батарей, размещенных на поверхности Земли.

Идея орбитальных электростанций разрабатывалась давно, ученые из NASA и Пентагона занимаются подобными исследованиями еще с 60-х годов. Ранее воплощение подобных проектов тормозила высокая стоимость транспортировки, но с развитием технологий космические электростанции могут в обозримом будущем стать реальностью.

Уже есть несколько интересных проектов по строительству солнечных установок на орбите. Кроме Space Solar Power Initiative, американцы разрабатывают орбитальную солнечную панель, которая будет поглощать солнечное излучение и передавать электронные пучки с помощью радиоволн на земной ресивер. Авторами разработки стали специалисты из научно-исследовательской лаборатории ВМС США. Они построили компактный солнечный модуль, на одной стороне которого оборудована фотовольтаическая панель. Внутри панели установлена электроника, преобразующая прямой ток в радиочастоту для передачи сигнала, другая сторона поддерживает антенну для передачи электронных пучков на Землю.

По словам ведущего автора разработки Поля Джаффе, чем ниже частота электронного пучка, несущего энергию, тем более надежной будет ее передача в плохую погоду. А при частоте 2.45 ГГц, можно получать энергию даже в сезон дождей. Солнечный ресивер обеспечит энергией все военные операции, о дизельных генераторах можно будет навсегда забыть.

США не единственная страна, которая планирует получать электроэнергию из космоса. Жесткая борьба за традиционные энергетические ресурсы заставила многие государства искать альтернативные источники энергии.

Японское агентство по освоению космоса JAXA разработало для установки на орбите Земли фотоэлектрическую платформу. Собранная с помощью установки солнечная энергия станет поступать на приемные станции Земли и преобразовываясь в электричество. Сбор солнечной энергии будет вестись на высоте 36 тыс. км.

Такая система, состоящая из серии наземных и орбитальных станций, должна начать работать уже в 2030 г., ее общая мощность составит 1 ГВт, что сопоставимо со стандартной атомной электростанцией. Для этого в Японии планируется построить искусственный остров длиной 3 км, на котором развернут сеть из 5 млрд антенн для преобразования в электричество радиоволн сверхвысоких частот. Возглавивший разработку научный сотрудник JAXA Сусуми Сасаки уверен, что размещение солнечных аккумуляторов в космосе приведет к революции в энергетике, позволив со временем полностью отказаться от традиционных источников энергии.

Аналогичные планы есть и у Китая, который построит на орбите Земли солнечную электростанцию размером больше, чем Международная космическая станция. Общая площадь солнечных панелей установки составит 5-6 тыс. кв. км. Согласно расчетам экспертов такая станция станет собирать солнечные лучи 99% времени, причем космические гелиопанели смогут генерировать в 10 раз больше электричества на единицу площади, чем наземные аналоги. Предполагается, что для передачи на наземный коллектор вырабатываемая электроэнергия будет преобразовываться в микроволны или лазерный луч. Начало строительства запланировано на 2030 г., стоимость проекта составит около $1 трлн.

Мировые инженеры оценивают возможности строительства солнечных космических электростанций не только на орбите, но и в областях, более близких к Солнцу, возле Меркурия. В этом случае солнечных батарей потребуется почти в 100 раз меньше. При этом приемные устройства можно вынести с поверхности Земли в стратосферу, что позволит осуществить эффективную передачу энергии в миллиметровом и субмиллиметровом диапазонах.

Разрабатываются также проекты лунных солнечных электростанций.

К примеру, японская компания Shimizu предложила создать пояс из солнечных батарей, протянутый по всему экватору Луны на 11 тыс. км и шириной 400 км.

Его разместят на обратной стороне спутника Земли, чтобы система постоянно находилась под солнечными лучами. Связать панели можно будет при помощи обычных силовых кабелей или оптических систем. Генерируемое электричество планируется передавать при помощи больших антенн, а получать при помощи специальных ресиверов на Земле.

В теории проект выглядит прекрасно, остается придумать, как доставить сотни тысяч панелей на спутник Земли и там их установить, а так же как доставлять энергию с Луны на нашу планету, не потеряв по пути значительную ее часть: ведь придется преодолеть 364 тыс. км. Так что идеи создания лунных электростанций слишком далеки от реальности и если они и реализуются, то очень нескоро.

Татьяна Громова

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

Космическая энергетика -- вид альтернативной энергетики, предусматривающий использование энергии Солнца для выработки электроэнергии, с расположением энергетической станции на земной орбите или на Луне.

Еще начиная с 70-х годов прошлого столетия, люди задумывались над тем, чтобы получать энергию прямо из космоса. Впервые такую идею описал Айзек Азимов в своем фантастическом рассказе «Логика». А первый патент, который описывал технологию передачи электроэнергии с помощью микроволн на значительное расстояние, получил Питер Глейзер в 1973 году. Хотя НАСА тогда не взялась за разработку этой идеи, посчитав ее слишком дорогой и опасной. Никто не мог гарантировать, что волны с точностью попадут с одной антенны на другую.

1. Спутник для выработки энергии

Разработка концепции.

Разработала концепцию солнечного спутника команда инженеров из калифорнийской компании Artemis Innovation Management Solutions во главе с Джоном Манкинсом. Как говорят разработчики, проект имеет важные преимущества перед предлагаемыми ранее технологиями. Инновационный подход к построению космического устройства устраняет необходимость в сложной системе управления питанием и системе распределения энергии.

Спутниковая солнечная электростанция будет собрана в космосе из отдельных элементов весом 49,5 - 198 килограммов, каждый из которых будет изготовлен по отдельности на Земле и доставлен на орбиту. По сути, она представляет собой огромный массив подвижных тонкопленочных зеркал, расположенных на внешней изогнутой поверхности спутника. Эти зеркала перехватывают и перенаправляют солнечный свет на фотоэлементы, расположенные на обратной стороне массива, которые вырабатывают электричество. Сторона спутника, обращенная к Земле, представляет собой круглый модульный массив, покрытый панелями микроволновой передачи энергии. Эти панели генерируют пучки радиочастотной энергии низкой интенсивности, которые будут передаваться на Землю.

После всех расчётов оказалось, что такой спутник вырабатывал бы 5000 мегаватт энергии, после передачи на землю оставалось бы 2000 мегаватт. Чтобы понять много это или нет, стоит сравнить эту мощность с Красноярской ГЭС, мощность которой составляет 6000 мегаватт.

Схема технологии.

Система предполагает наличие аппарата-излучателя, находящегося на геостационарной орбите. Предполагается преобразовывать солнечную энергию в форму, удобную для передачи (СВЧ, лазерное излучение), и передавать на поверхность в «концентрированном» виде. В этом случае на поверхности необходимо наличие «приёмника», воспринимающего эту энергию.

Космический спутник по сбору солнечной энергии по существу состоит из трех частей:

· средства сбора солнечной энергии в космическом пространстве, например, через солнечные батареи или тепловой двигатель Стирлинга;

· средства передачи энергии на землю, например, через СВЧ или лазер;

· средства получения энергии на земле, например, через ректенны.

Космический аппарат будет находиться на ГСО и ему не нужно поддерживать себя против силы тяжести. Он также не нуждается в защите от наземного ветра или погоды, но будет иметь дело с космическими опасностями, такими как микрометеориты и солнечные бури.

Актуальность в наши дни.

Так как за 40 лет со времени появления идеи солнечные батареи сильно упали в цене и увеличились в производительности, а грузы на орбиту стало доставлять дешевле, в 2007 году «Национальное космическое общество» США представило доклад, в котором говорит о перспективах развития космической энергетики в наши дни.

Преимущество системы

· Высокая эффективность из-за того, что нет атмосферы, выработка энергии не зависит от погоды и времени года.

· Практически полное отсутствие перерывов, так как кольцевая система спутников, опоясывающая Землю, в любой момент времени будет иметь хотя бы один, освещаемый Солнцем.

2. Лунный пояс

Проект космической энергетики, представленный компанией Shimizu в 2010 году. По задумке японских инженеров это должен быть пояс, из солнечных батарей протянутый по всему экватору Луны (11 тыс. километров) и шириной 400 километров.

Солнечные панели.

Так как производство и транспортировка такого количества солнечных батарей с земли не представляется возможным, то по замыслу ученых солнечные элементы должны будут производиться прямо на Луне. Для этого можно использовать лунный грунт, из которого можно делать солнечные батареи.

Передача энергии.

Энергия с этого пояса будет передаваться радиоволнами с помощью громадных 20 километровых антенн, и приниматься ректеннами здесь на земле. Второй способ передачи, который может использоваться это передача световым лучом с помощью лазеров и прием светоуловителем на земле.

Преимущества системы.

Так как на Луне нет атмосферы и погодных явлений, энергию можно будет вырабатывать почти круглосуточно и с большим коэффициентом эффективности.

Дэвид Крисуэлл предположил, что Луна является оптимальным местом для солнечных электростанций. Основное преимущество размещения солнечных коллекторов энергии на Луне в том, что большая часть солнечных батарей может быть построена из местных материалов, вместо земных ресурсов, что значительно снижает массу и, следовательно, расходы по сравнению с другими вариантами космических солнечных электростанций.

3. Технологии, применяющиеся в космической энергетике

космический лазерный электроэнергия

Беспроводная передача энергии на Землю.

Беспроводная передача электроэнергии была предложена на ранней стадии в качестве средства для передачи энергии от космической или Лунной станции к Земле. Энергия может быть передана с помощью лазерного излучения или СВЧ на различных частотах в зависимости от конструкции системы. Основная проблема использования СВЧ является нарушение экологической и биологической системы региона получения энергии. Ионизация биологических материалов начинается только с ультрафиолетового излучения и появляется при более высоких радиочастотах. Поэтому необходимо будет использовать частоты ниже ультрафиолетового излучения.

Исследователи НАСА работали в 1980-х годах с возможностью использования лазеров для излучения энергии между двумя точками в пространстве. В перспективе эта технология станет альтернативным способом передачи энергии в космической энергетике. В 1991 году начался проект SELENE, который предполагал создание лазеров для космической энергетики, в том числе и для излучения энергии лазером на лунные базы. В 1988 Грант Логан предложили использовать лазер, размещенный на Земле, чтобы обеспечить энергией космические станции, предположительно это можно было осуществить в 1989. Предлагалось использование солнечных элементов из алмаза при температуре 300 °C для преобразования ультрафиолетового лазерного излучения. Проект SELENE продолжал работать над этой концепцией, пока не был официально закрыт в 1993 после двух лет исследований, так и не осуществив тестирования технологии на большие расстояния. Причина закрытия: высокая стоимость осуществления.

Преобразование солнечной энергии в электрическую.

В космической энергетике единственный способ эффективного получения энергии это использование фотоэлементов. Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии. КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16 %, у лучших образцов до 25 %. В лабораторных условиях уже достигнут КПД 43 %.

Получение энергии от СВЧ волн испускаемых источником.

Так же важно почерпнуть способы получения энергии. Один из них это получение энергии с помощью ректенн. Ректенна (выпрямляющая антенна) -- устройство, представляющее собой нелинейную антенну, предназначенную для преобразования энергии поля падающей на неё волны в энергию постоянного тока.

Преимущества и недостатки.

Космическая солнечная энергия -- энергия, которую получают за пределами атмосферы Земли. При отсутствии загазованности атмосферы или облаков, на Землю падает примерно 35 % энергии от той, которая попала в атмосферу. Кроме того, правильно выбрав траекторию орбиты, можно получать энергию около 96 % времени. Таким образом, фотоэлектрические панели на геостационарной орбите Земли (на высоте 36000 км) будет получать в среднем в восемь раз больше света, чем панели на поверхности Земли и даже больше когда космический аппарат будет ближе к Солнцу, чем Земля. Дополнительным преимуществом является тот факт, что в космосе нет проблемы с весом или коррозии металлов из-за отсутствия атмосферы.

С другой стороны, главный недостаток космической энергетики и по сей день является её высокая стоимость. Средства, затраченные на вывод на орбиту системы общей массой 3 млн. т. окупятся только в течение 20 лет, и это если принимать в расчёт удельную стоимость доставки грузов с Земли на рабочую орбиту 100 $/кг. Нынешняя же стоимость вывода грузов на орбиту намного больше.

Основные технологические проблемы.

По данным исследований 2008 года, есть пять основных технологических проблем, которые наука должна преодолеть, чтобы космическая энергия стала легкодоступной.

· Фотоэлектрические и электронные компоненты должны работать с высокой эффективностью при высокой температуре.

· Беспроводная передача энергии должна быть точной и безопасной.

· Космические электростанции должны быть недорогими в производстве.

· Низкая стоимость космических ракет-носителей.

· Поддержание постоянного положения станции над приёмником энергии: давление солнечного света будет отталкивать станцию от нужного положения, а давление электромагнитного излучения, направленного на Землю, будет толкать станцию от Земли.

Размещено на Allbest.ru

...

Подобные документы

    Солнечная энергетика. История развития солнечной энергетики. Способы получения электричества и тепла из солнечного излучения. Достоинства и недостатки использования солнечной энергетики. Типы фотоэлектрических элементов. Технологии солнечной энергетики.

    реферат , добавлен 30.07.2008

    Рентабельность развития солнечной космической электростанции, этапы и направления данного процесса, его перспективы, значение. Фотоэлектрическое преобразование солнечного излучения. Беспроводная передача энергии с использованием уравнения передачи Фриис.

    курсовая работа , добавлен 17.06.2012

    Возрастание интереса к проблеме использования солнечной энергии. Разные факторы, ограничивающие мощность солнечной энергетики. Современная концепция использования солнечной энергии. Использование океанской энергии. Принцип действия всех ветродвигателей.

    реферат , добавлен 20.08.2014

    Ознакомление с основными направлениями и перспективами развития альтернативной энергетики. Определение экономических и экологических преимуществ использования ветровой, солнечной, геотермальной, космической, водородной, сероводородной энергии, биотоплива.

    реферат , добавлен 15.12.2010

    Сущность и краткая характеристика видов энергии. Особенности использования солнечной и водородной энергии. Основные достоинства геотермальной энергии. История изобретения "ошейника" А. Стреляемым, принцип его работы и потребления энергии роста растений.

    презентация , добавлен 20.12.2009

    Геотермальная энергия и ее использование. Применение гидроэнергетических ресурсов. Перспективные технологии солнечной энергетики. Принцип работы ветроустановок. Энергия волн и течений. Состояние и перспективы развития альтернативной энергетики в России.

    реферат , добавлен 16.06.2009

    Количество солнечной энергии, попадающей на Землю, ее использование человеком. Способы пассивного применения солнечной энергии. Солнечные коллекторы. Технологический цикл солнечных тепловых электростанций. Промышленные фотоэлектрические установки.

    презентация , добавлен 06.12.2015

    Производство электроэнергии различными способами. Фотоэлектрические установки, системы солнечного теплоснабжения, концентрирующие гелиоприемники, солнечные коллекторы. Развитие солнечной энергетики. Экологические последствия развития солнечной энергетики.

    реферат , добавлен 27.10.2014

    Основные сведения об альтернативной энергетики. Преимущества и недостатки вакуумных коллекторов. Снижение зависимости от поставок энергоносителей. Применение фокусирующих коллекторов. Преимущества использования экологически чистой солнечной энергии.

    реферат , добавлен 21.03.2015

    Обзор технологий и развитие электроустановок солнечных электростанций. Машина Стирлинга и принцип ее действия. Производство электроэнергии с помощью солнечных батарей. Использования солнечной энергии в различных отраслях производства промышленности.

1968 : Питер Глейзер представил идею больших солнечных спутниковых систем с солнечным коллектором размером в квадратную милю на высоте геостационарной орбиты (ГСО 36000 км над экватором), для сбора и преобразования энергии солнца в электромагнитный пучок СВЧ для передачи полезной энергии на большие антенны на Земле.

1990 :"Исследовательским центром им. М. В. Келдыша" разработана концепция энергоснабжения Земли из космоса с использованием низких околоземных орбит. «Уже в 2020-2030 годы можно создать 10-30 космических электростанций, каждая из которых будет состоять из десяти космических энергомодулей. Планируемая суммарная мощность станций будет равна 1,5-4,5 ГВт, а суммарная мощность у потребителя на Земле - 0,75-2,25 ГВт». Далее планировалось к 2050-2100 годам довести количество станций до 800 единиц, а конечную мощность у потребителя до 960 ГВт. Однако на сегодняшний день неизвестно даже о создании рабочего проекта на основе этой концепции [ ] ;

2009 : Японское агентство аэрокосмических исследований объявило о своих планах вывести на орбиту спутник солнечной энергии, которые будут передавать энергию на Землю с помощью микроволн. Они надеются вывести первый прототип орбитального спутника к 2030 году.

2009 : Компания Solaren расположенная в Калифорнии (США) подписала договор с компанией PG&E о том, что последняя будет покупать энергию, которую Solaren произведет в космосе. Мощность будет составлять 200 МВт. По плану этой энергией будут питаться 250 000 домов. Реализация проекта планируется на 2016 год.

2011 : Объявлено о проекте нескольких японских корпораций, который должен быть реализован на базе 40 спутников с прикрепленными солнечными батареями. Флагманом проекта должна стать корпорация Mitsubishi . Передача на землю будет осуществляться с применением электромагнитных волн, приёмником должно стать «зеркало» диаметром около 3 км, которое будет находиться в пустынном районе океана . По состоянию на 2011 год планируется запустить проект в 2012 году

2013 : Главное научное учреждение Роскосмоса - ЦНИИмаш выступил с инициативой создания российских космических солнечных электростанций (КСЭС) мощностью 1-10 ГВт с беспроводной передачей электроэнергии наземным потребителям. В ЦНИИмаше обращают внимание, что американские и японские разработчики пошли по пути использования СВЧ -излучения, которое сегодня представляется значительно менее эффективным, чем лазерное .

Спутник для выработки энергии

История идеи

Изначально идея появилась в 1970-х годах. Появление такого проекта было связано с энергетическим кризисом. В связи с этим правительство США выделило 20 миллионов долларов космическому агентству NASA и компании Boeing для расчёта целесообразности проекта гигантского спутника SPS (Solar Power Satellite).

После всех расчётов оказалось, что такой спутник вырабатывал бы 5000 мегаватт энергии, после передачи на землю оставалось бы 2000 мегаватт. Чтобы понять много это или нет, стоит сравнить эту мощность с Красноярской ГЭС , мощность которой составляет 6000 мегаватт. Но примерная стоимость такого проекта 1 триллион долларов, что и послужило причиной закрытия программы.

Схема технологии

Система предполагает наличие аппарата-излучателя, находящегося на геостационарной орбите . Предполагается преобразовывать солнечную энергию в форму, удобную для передачи (СВЧ , лазерное излучение), и передавать на поверхность в «концентрированном» виде. В этом случае на поверхности необходимо наличие «приёмника», воспринимающего эту энергию .

Космический спутник по сбору солнечной энергии по существу состоит из трех частей:

  • средства сбора солнечной энергии в космическом пространстве, например, через солнечные батареи или тепловой двигатель Стирлинга ;
  • средства передачи энергии на землю, например, через СВЧ или лазер;
  • средства получения энергии на земле, например, через ректенны .

Космический аппарат будет находиться на ГСО и ему не нужно поддерживать себя против силы тяжести. Он также не нуждается в защите от наземного ветра или погоды, но будет иметь дело с космическими опасностями, такими как микрометеориты и солнечные бури .

Актуальность в наши дни

Так как за 40 лет со времени появления идеи солнечные батареи сильно упали в цене и увеличились в производительности, а грузы на орбиту стало доставлять дешевле, в 2007 году «Национальное космическое общество» США представило доклад в котором говорит о перспективах развития космической энергетики в наши дни.

Преимущества системы

  • Высокая эффективность из-за того, что нет атмосферы, выработка энергии не зависит от погоды и времени года.
  • Практически полное отсутствие перерывов так как кольцевая система спутников, опоясывающая Землю, в любой момент времени будет иметь хотя бы один, освещаемый Солнцем.

Лунный пояс

Проект космической энергетики представленный компанией Shimizu в 2010 году . По задумке японских инженеров это должен быть пояс из солнечных батарей протянутый по всему экватору Луны (11 тыс. километров) и шириной 400 километров.

Солнечные панели

Так как производство и транспортировка такого количества солнечных батарей с земли не представляется возможным, то по замыслу ученых солнечные элементы должны будут производиться прямо на Луне. Для этого можно использовать лунный грунт из которого можно делать солнечные батареи.

Передача энергии

Энергия с этого пояса будет передаваться радиоволнами с помощью громадных 20 километровых антенн и приниматься ректеннами здесь, на Земле. Второй способ передачи который может использоваться это передача световым лучом с помощью лазеров и прием свето-уловителем на земле.

Преимущества системы

Так как на Луне нет атмосферы и погодных явлений, энергию можно будет вырабатывать почти круглосуточно и с большим коэффициентом эффективности.

Дэвид Крисуэлл предположил, что Луна является оптимальным местом для солнечных электростанций. Основное преимущество размещения солнечных коллекторов энергии на Луне в том, что большая часть солнечных батарей может быть построена из местных материалов, вместо земных ресурсов, что значительно снижает массу и, следовательно, расходы по сравнению с другими вариантами космических солнечных электростанций.

Технологии применяющиеся в космической энергетике

Беспроводная передача энергии на Землю

Беспроводная передача электроэнергии была предложена на ранней стадии в качестве средства для передачи энергии от космической или Лунной станции к Земле. Энергия может быть передана с помощью лазерного излучения или СВЧ на различных частотах в зависимости от конструкции системы. Какой выбор был сделан, чтобы передача излучения была не ионизирующей, во избежание возможных нарушений экологии или биологической системы региона получения энергии? Верхний предел для частоты излучения установлен таким, чтобы энергия на один фотон не вызывала ионизацию организмов при прохождении через них. Ионизация биологических материалов начинается только с ультрафиолетового излучения и, как следствие, проявляется при более высоких частотах, поэтому большое количество радиочастот будет доступно для передачи энергии.

Лазеры

Преобразование солнечной энергии в электрическую

В космической энергетике (в существующих станциях и при разработках космических электростанций) единственный способ эффективного получения энергии это использование фотоэлементов. Фотоэлемент - электронный прибор, который преобразует энергию фотонов в электрическую энергию . Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века. Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии. КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16 %, у лучших образцов до 25 %. В лабораторных условиях уже достигнут КПД 43 % .

Получение энергии от СВЧ волн испускаемых спутником

Так же важно почеркнуть способы получения энергии. Один из них это получение энергии с помощью ректенн. Ректенна (выпрямляющая антенна) - устройство , представляющее собой нелинейную антенну, предназначенную для преобразования энергии поля падающей на неё волны в энергию постоянного тока . Простейшим вариантом конструкции может быть полуволновый вибратор, между плечами которого устанавливается устройство с односторонней проводимостью (например диод). В таком варианте конструкции антенна совмещается с детектором, на выходе которого, при наличии падающей волны, появляется ЭДС. Для повышения усиления такие устройства могут быть объединены в многоэлементные решётки.

Преимущества и недостатки

Космическая солнечная энергия - энергия, которую получают за пределами атмосферы Земли. При отсутствии загазованности атмосферы или облаков, на Землю падает примерно 35 % энергии от той, которая попала в атмосферу. Кроме того, правильно выбрав траекторию орбиты, можно получать энергию около 96 % времени. Таким образом, фотоэлектрические панели на геостационарной орбите Земли (на высоте 36000 км) будет получать в среднем в восемь раз больше света, чем панели на поверхности Земли и даже больше когда космический аппарат будет ближе к Солнцу чем Земля. Дополнительным преимуществом является тот факт, что в космосе нет проблемы с весом или коррозии металлов из-за отсутствия атмосферы.

С другой стороны, главный недостаток космической энергетики и по сей день является её высокая стоимость. Средства, затраченные на вывод на орбиту системы общей массой 3 млн т. окупятся только в течение 20 лет, и это если принимать в расчёт удельную стоимость доставки грузов с Земли на рабочую орбиту 100 $/кг. Нынешняя же стоимость вывода грузов на орбиту намного больше.

Вторая проблема создания ОЭС - большие потери энергии при передаче. При передаче энергии на поверхность Земли будет потеряны, по крайней мере, 40-50 %.

Основные технологические проблемы

По данным американских исследований 2008 года, есть пять основных технологических проблем, которые наука должна преодолеть, чтобы космическая энергия стала легкодоступной:

  • Фотоэлектрические и электронные компоненты должны работать с высокой эффективностью при высокой температуре.
  • Беспроводная передача энергии должна быть точной и безопасной.
  • Космические электростанции должны быть недорогими в производстве.
  • Низкая стоимость космических ракет-носителей.
  • Поддержание постоянного положения станции над приёмником энергии: давление солнечного света будет отталкивать станцию от нужного положения, а давление электромагнитного излучения , направленного на Землю, будет толкать станцию от Земли.

Другие способы использования космической энергии

Использование электроэнергии в космических полетах

Кроме того, чтобы излучать энергию на Землю, спутники ОЭС могут также питать межпланетные станции и космические телескопы. Так же это может быть безопасной альтернативой ядерным реакторам на корабле который полетит на красную планету . Другой сектор, который может извлечь выгоду из ОЭС будет космический туризм .

Примечания

  1. Glaser, Peter E. (December 25, 1973). “Method And Apparatus For Converting Solar Radiation To Electrical Power” . United States Patent 3,781,647 .

Двадцать лет спустя

Технические преимущества

Россия обладает еще одним технологическим преимуществом

Ждем ваших комментариев.

Еще в начале 90-х годов в России разрабатывалась концепция освоения солнечного космического пространства. Она предусматривала, что в 2020-2030 гг. на околоземной орбите будет построено 10-30 солнечных станций, с суммарной мощностью на приеме до 2,5 ГВт. К 2050-2100 гг. количество станций планировалось довести до 800, с суммарной мощностью, как у тысячи ДнепроГЭСов (960 ГВт). Но глобальный экономический кризис разрушил все эти планы.

Двадцать лет спустя

За двадцать лет состояние в солнечной энергетике кардинально изменилась. Солнечные батареи значительно подешевели, при этом возросли их эффективность и КПД. На фоне этого вновь появился интерес к космическим солнечным станциям. По словам экспертов, именно сейчас формируется рынок космического электричества. На то есть несколько причин:

экологическая чистота (никаких вредных выбросов),

низкая стоимость электроэнергии (правда, при огромных первоначальных затратах),

независимость от иссякаемых природных ресурсов.

И Россия имеет уникальный шанс стать лидером в этой области.

Технические преимущества

В 1993 году всю Европу удивил огромный (величиной с Луну) «солнечный зайчик», который быстро двигался через весь континент. Это была блестящая реализация уникального проекта «Знамя». В космос доставили капсулу, в которой было упаковано «полотно» солнечного отражателя. На орбите отражатель развернулся во всю свою гигантскую ширину, при этом площадка в 300 м2 была толщиной в 2 мм и весила всего 4 кг.

Больше никому в мире не удалось это повторить. Сегодня только Россия владеет этой технологией и патентом на нее.

Другие «космические» разработчики, японцы и американцы, предпочитают работать «по-земному» — собирать жесткие конструкции в сотни и тысячи квадратных метров.

Россия обладает еще одним технологическим преимуществом

Энергию из космоса можно передавать двумя способами: радиоволнами сверхвысокочастотного излучения (СВЧ) и лазером. Диаметр СВЧ луча у поверхности земли 20 км, а лазера — 40 м. Получается, что использование лазера намного более эффективно.

Сегодня именно наша страна является мировым лидером по производству лазеров, выпуская 70% от общего объема.

Обладание передовой лазерной техникой и уникальной технологией развертывания бескаркасных солнечных батарей, дает России возможность не только стать первыми в освоении солнечной космической энергии и в передаче на землю, но сделать это с наименьшими материальными затратами.

Спасибо, что дочитали до конца.

Ждем ваших комментариев.